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Abstract. We consider a dynamical system subjected to weak but adiabatically slow
fluctuations of an external origin. Based on the ‘adiabatic following’ approximation we carry
out an expansion inα|µ|−1, whereα is the strength of fluctuations and|µ|−1 refers to the
time scale of evolution of the unperturbed system to obtain a linear differential equation for the
average solution. The theory is applied to the problems of a damped harmonic oscillator and
diffusion in a turbulent fluid. The result is the realization of a ‘renormalized’ diffusion constant
or damping constant for the respective problems. The applicability of the method has been
analysed critically.

1. Introduction

The standard paradigm of the temporal evolution of nonequilibrium processes, regarded,
in general, as stochastic processes, is the century-old problem of Brownian motion [1, 2].
This involves the random motion of microscopic particles effectively introducing the motion
of a physical system, the Brownian particle to be observed on a macroscopic level. To
generate the successive levels of description from the microscopic to the macroscopic realm
one essentially introduces coarse-graining of space and time in the dynamics. Although
there exists no general program of coarse-graining, it is nevertheless possible to realize
the dynamics of stochastic processes in terms of some systematic separation of time scales
consistent with the experiments at the macroscopic level of description.

The standard separation of time scales in the description of Brownian motion involves
correlation functions which are nonzero over some intervalτc, which is the correlation
time of fluctuations and we require that1t , the coarse-grained time scale over which one
observes the average motion, is much greater thanτc, such thatγ−1� 1t � τc, whereγ−1

is the system’s damping time. Physically this implies that one smooths out the fluctuations
of the system on a time scale during which microscopic particles are correlated but not on a
scale during which the system is damped. Thus the fluctuations considered in the stochastic
process of the Brownian motion are weak and rapid.

In the present problem we consider a multivariate dynamical system driven by weak
but adiabatically slow fluctuations. The slow fluctuations characterized by very long
correlation time have also attracted a lot of attention of various workers over the years
[2–4, 7, 8, 11, 14, 15]. While the overwhelming majority of the treatment of stochastic
differential equation with fast fluctuations is based on the assumption that there is a
very short autocorrelation timeτc, such that one can adopt the scheme of expansion in
ατc, a suitable simplifying approximation for dealing with very long correlation times is
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relatively scarce. In general, the problem of long correlation time is handled theoretically
at the expense of a severe restriction on the type of stochastic behaviour. For instance,
several authors [2–4, 7, 8, 11, 14, 15] have tried the linear and nonlinear models within
the framework of Markov processes of the dichotomic processes type, two-state Markov
processes, random telegraphic processes, etc. Our aim here is to explore aperturbative
methodfor finding an equation for the average solution pertaining to the separation of time
scale implied in the inequality

1

|µ| � 1t � τc

where |µ| is the largest eigenvalue of the unperturbed system,where we do not keep any
restriction on the type of stochastic behaviour. The strategy being perturbative is based on
an expansion inα|µ|−1 rather than inατc as is done in the case of fast fluctuations. The
method dealt with in the present treatment is thus somewhat complementary to the scheme
of expansion of the latter kind.

To put the issue in a proper perspective we first borrow a simple example of adiabatic
dynamics in terms of Bloch equations [5, 6], well known in magnetic resonance and quantum
optical experiments. The problem concerns a two-level system interacting with a single-
mode electromagnetic field, where the fieldE(t) varies slowly enough ‘adiabatically’ on
the time scale of the inverse of the damping constant or frequency detuning between the
atom and the field. The term ‘adiabatic following’ is thus used to describe collectively
the associated experimental phenomena [5, 6]. The model is described by the following
equation:

d

dt

uv
w

 =
 −1/T2 −1 0

1 −1/T2 gE(t)
0 −gE(t) −1/T1

uv
w

+
 0

0
weq/T1

 . (1)

Hereu, v,w are the Bloch vector components,T1 andT2 are the energy and dephasing
relaxation terms,1 is the detuning of the frequency of the fieldE(t) from that of the two-
level system.g includes the effect of coupling of the atom to the field. The equilibrium
value, towards which the population inversionw relaxes whenE = 0 is denoted byweq.
Adiabatic following approximation asserts that if the fieldE(t) is varied slowly enough then
w, the population inversion variable would follow adiabatically from−1 to ∼+1 in the
process, i.e. a ground state population could be adiabatically inverted.

Our problem in the present investigation concerns such processes where the adiabatic
variation ofE(t), in addition, is stochastic. Thus the usual limit in the ‘adiabatic following’
applies, i.e. the rate of variation of the pulse or fluctuations is much small compared to the
relaxation rate of the system. With these in mind we may treat equation (1) as a stochastic
differential equation provided the stochastic properties ofE(t) area priori known.

To formulate the problem we thus consider a system subject to fluctuating external
forces where the fluctuations are weak and adiabatically slow. The equation of motion then
become a stochastic differential equation, a particular category of which is a general form
of equation (1) (for simplicity we disregard the constant part on the right-hand side),

u̇ = A(t) u. (2)

Here A(t) is a random function of time, stochastic properties of which are given.
Linear multiplicative noise (equation (2)) has wide applications in studying the random
Markov process [7], fluctuating barrier crossing [8], enzymatic kinetics in biology [9],
nuclear magnetic resonance in physics [10] and stochastic resonance in linear systems [11]
and in many other contexts [12].
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Based on the systematic separation of time scales using the adiabatic following
approximation, a differential equation for the average solution〈u〉 is obtained. This
approximation allows us an expansion inα|µ|−1, whereα is a measure of the strength
of fluctuations andµ−1 refers to the internal time scale of the unperturbed system.

As an immediate application of the method we treat the problem of a damped harmonic
oscillator with adiabatically fluctuating frequency. The method is extended to the problem
of diffusion in a turbulent fluid as another illustration. The central result is that one realizes
a ‘renormalized’ transport coefficient or a damping constant so that the diffusion or the
damping process gets significantly modified by adiabatic stochasticity. We show that the
method is equipped to deal with similar kinds of stochastic processes.

The outlay of the paper is as follows. In section 2 we discuss the method of adiabatic
following approximation on the stochastic differential equation of the form (2). The essential
idea is to extract the average dynamics of the relevant physical quantity. The method has
been analysed critically in section 3. The method is applied to two specific cases in section 4.
We point out that a wide class of problems can be treated in a similar way. The paper is
concluded in section 5.

2. A method for weak and adiabatic fluctuations

To start with we consider a linear equation of the type (2) and rewrite it as

u̇ = {A0+ αA1(t)}u (3)

whereu is a vector withn components,A0 is a constant matrix of dimensionn×n andA1(t)

is a stochastic matrix,α is a parameter (of dimension 1/t) which measures the strength of
fluctuation.

It is convenient to assume thatA1(t) is a stationary process with〈A1(t)〉 = 0.
Equation (3) admits of two important time scales of the system measured by the inverse
of the largest eigenvalue of the matrixA0 and the time scale of fluctuations ofA1(t)

(the correlation time of fluctuation). As has already been mentioned in the treatment of
the overwhelming majority of stochastic processes, such as, motion of a Brownian particle
in a fluid or electromagnetic waves in a turbulent atmosphere, one essentially considers a
situation where the fluctuations are weak and rapid. The correlation time of fluctuations is
much shorter compared to the time scale set by the inverse of the eigenvalues ofA0. In the
appropriate limit we encounter the delta-correlated events and solve approximately or exactly
the relevant stochastic differential equations [2]. The familiar examples of paramagnetic
resonance and line broadening are well known in this context.

Since in the present problem we consider a stochastic process in which the fluctuations
are weak but adiabatically slow,A1(t) is an adiabatic stochastic process. Therefore the
usual procedure of systematic cumulant expansion, which inherently takes into account the
short correlation time of fluctuations, is not valid. An alternative treatment is thus sought
for.

To this end we first introduce an interaction representation as given by

u(t) = exp(A0t) v(t)

and applying it to equation (3) we obtain

v̇ = α V (t) v
where

V (t) = exp(−A0t)A1(t) exp(A0t).
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On integration the last equation yields

v(t) = v(0)+ α
∫ t

0
V (t ′) v(t ′) dt ′. (4)

On iterating equation (4) once, we are now led to an ensemble average equation of the
following form:

〈v(t)〉 = v(0)+ α2
∫ t

0
dt ′
∫ t ′

0
dt ′′ 〈V (t ′)V (t ′′) v(t ′′)〉. (5)

The equation is still exact since no second-order approximation (as is usually done) has
been used.

Now taking the time derivative ofv(t) we arrive at the following integrodifferential
equation in which the initial valuev(0) no longer appears,

d

dt
〈v(t)〉 = α2

∫ t

0
〈V (t)V (t ′) v(t ′)〉 dt ′. (6)

Making use of a change of integration variablet ′ = t − τ we obtain

d

dt
〈v(t)〉 = α2

∫ t

0
〈V (t)V (t − τ) v(t − τ)〉 dτ. (7)

Reverting back to the original representation equation (7) yields

d

dt
〈u(t)〉 = A0〈u〉 + α2

∫ t

0
〈A1(t) exp(A0τ)A1(t − τ) u(t − τ)〉 dτ. (8)

The adiabatic following assumption, thatA1(t) and the components ofu(t) vary slowly
on the scale of inverse ofA0, can now be utilized. Following Crisp [6] we note that a Taylor
series expansion ofA1(t − τ) u(t − τ) in the average〈· · ·〉 of the α2-term in equation (8)
allows the integral to be evaluated and the last equation reduces to the following form:

d

dt
〈u(t)〉 = A0〈u〉 + α2

∞∑
n=0

(−1)n

n!

〈
A1(t)

{∫ ∞
0

dτ exp(A0τ)τ
n

}
dn

dtn
[A1(t) u(t)]

〉
. (9)

The integral in equation (9) can be evaluated by rewriting it in terms of the following
matrix elements:

I nik =
∫ ∞

0
dτ τn

∑
j

Dij eµjj τD−1
jk

=
∑
j

Dij

n!

(µjj )n+1
D−1
jk Reµjj < 0.

Therefore,

In = n!DEn+1D
−1 (10)

whereD is a matrix which diagonalizesA0 and

En+1 =

 1/µn+1
11 0

. . .

0 1/µn+1
jj


andµjj are the eigenvalues ofA0.

Equation (9) then assumes the following form:

d

dt
〈u(t)〉 = A0〈u〉 + α2

∞∑
n=o
(−1)n

〈
A1(t)DEn+1D

−1 dn

dtn
[A1(t) u(t)]

〉
. (11)
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Although the equation involves an infinite series it is expected to yield a useful result
in the adiabatic following approximation. If this approximation is valid, the quantity
[A1(t) u(t)] varies little in the time

∣∣µn+1
jj

∣∣−1
of En+1 and the series converges rapidly.

Keeping only the two lowest-order terms we arrive at

d

dt
〈u(t)〉 = A0〈u〉 + α2〈A1(t)X1A1(t) u(t)〉 − α2〈A1(t)X2 Ȧ1(t) u(t)〉

−α2〈A1(t)X2A1(t) u̇(t)〉 (12)

where

Xn+1 =DEn+1D
−1. (13)

It is evident that the average〈u̇〉 is related to a more complicated average. As a next
approximation [13–15] we now suppose that the latter averages may be broken up as

〈A1(t)X1A1(t) u(t)〉 ≈ 〈A1(t)X1A1(t)〉〈u(t)〉 (14)

and so on. Keeping only the terms up to the order ofα2 we obtain

d

dt
〈u(t)〉 = {A0+ α2[〈A1(t)X1A1(t)〉 − 〈A1(t)X2 Ȧ1(t)〉

−〈A1(t)X2A1(t)〉A0]
}〈u(t)〉. (15)

Thus the average ofu(t) obeys a nonstochastic differential equation in which the effect
of weak adiabatic fluctuations is accounted for by ‘renormalizing’A0 through the addition
of constant terms of the order ofα2. The net effect is that depending on the specificity of
the situations one realizes a dissipative or a gain term in the average dynamics. We note in
passing that the average dynamics ofu is independent of any explicit correlation function.

3. Discussions on the method

The theory of stochastic differential equations with multiplicative noise has a long history.
The stochastic processes dealt with the overwhelming majority of the cases concerning
the fast processes (more precisely, the correlation time between the noise events has been
considered to be the shortest time scale of the dynamics). In the previous section we
have considered a stochastic process which is adiabatically slow. The traditional scheme
of solving stochastic differential equations with fast noise processes is that one reduces
them to Bourret’s integral equations [13] and then performs the decoupling of the product
of operators. Here we have followed the equation scheme up to equation (9) and then
make use of the ‘adiabatic following’ approximation. It is necessary to make the following
distinctions.

First, note that in going from equation (8) to (11) we have made no approximation so far
as the full infinite series is concerned. Also each term is not of orderατc as in the case of
fast processes (as emphasized by van Kampen [14]), but of orderα dn

dtn [A(t) u(t)]/µn+1
jj . Just

as the theory of fast processes is valid forατc very small which implies that the successive
cumulants in the expansion are small, validity of the description of adiabatic processes rests
on the smallness of successiveα dn

dtn [A(t) u(t)]/µn+1
jj terms. Thus the two expansions are

essentially different.
Second, the decoupling approximation has been carried out both in the fast as well as

in the slow processes. Its justifications in the former case has been established early on by
Brissaud and Frisch [15]. It had been strongly advocated by van Kampen [14] who has
asserted that although it seems to neglect certain correlations, the ‘statistical mechanics
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of transport processes would be in a very sorry state without such a hypothesis’. It
is not difficult to comprehend that its spiritual root lies in ‘stosszahlansatz’, ‘molecular
chaos assumption’ or ‘random-phase approximation’. The essential point, however, in
the decoupling scheme is the realization of a separation of time scale of the average of
the product of fluctuating quantitiesA(t) and the average ofu itself, consistent with the
expansions pertaining to slow or fast processes.

That the two expansion schemes in the fast and slow stochastic processes are different
can be confirmed if one compares the lowest-order terms of the corresponding evolution.
According to the present scheme equation (15) itself asserts that (free motion neglected)

d

dt
〈u〉 ∼ α2

|µ| 〈u〉 (16)

where |µ|−1 refers to the time scale set by theA0 matrix which is short in the adiabatic
following limit. For a fast stochastic process, on the other hand, the counterpart of
equation (16) is

d

dt
〈u〉 ∼ α2τc〈u〉 (17)

whereτc defines the very short correlation time of the noise [14].
The difference in the expansion schemes also makes the relative errors made in the

decoupling approximation in the two cases, different. To this end we first note that
equation (15) is obtained from equation (8). Up to second order it means omitting terms
of the order of(α1t)3 and higher (where1t defines the coarse-grained time scale of the
evolution of the average). As the lower bound of1t is determined by|µ|−1, it implies that
we neglect terms of the order of

(
α|µ|−1

)3
in the evolution equation. Thus the relative error

made in the decoupling approximation in the case of adiabatic expansion is
(
α|µ|−1

)3
.

As demonstrated by van Kampen [14] the corresponding error made in the decoupling
approximation in Bourret’s scheme is of the order of(ατc)3. The workability of the
decoupling approximation in the fast and slow stochastic processes is thus demonstrated
in the two different expansion procedures ensuring their respective fast convergence in the
limit ατc (fast processes) orα|µ|−1 (slow processes) small but finite.

So, to summarize, we point out that the implementation of Bourret’s decoupling
approximation is a major step for almost any treatment of multiplicative noise to date
[2, 7,11–15]. This is because of the fact that the average of a product of stochastic quantities
does not factorize into the product of averages, although it has been argued that [2, 7,11–21]
good approximations can be derived by assuming such a factorization. In the case of fast
fluctuations it has been justified if the driving stochastic noise has a fast correlation time
such that Kubo numberα2τc is very small in the cumulant expansion scheme (an expansion
in ατc). The factorization has been shown to be exact in the limit of zero correlation time
and in some specific noise processes [7, 14] and the solution for the average can be found
exactly. The present scheme of adiabatic expansion, on the other hand, is an expansion
in α|µ|−1 and it may be argued in the same way that factorization in the slow fluctuation
is valid whereα2|µ|−1 is very small. Essentially it implies thatu(t) in the average (in
the right-hand side of equation (12)) is realized as an average〈u(t)〉 (which varies in the
coarse-grained time scale1t) pertaining to the separation of the time scales in the inequality
|µ|−1 � 1t � τc adopted in the present case instead of the inequalityτc � 1t � |µ|−1

employed in the case of fast fluctuation and cumulant expansion.
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4. Applications

4.1. Damped harmonic oscillator with adiabatically fluctuating frequency

To illustrate the above-mentioned method we consider a model of a damped harmonic
oscillator with random frequency where the fluctuation is weak and adiabatically slow on
the time scale of dissipation. The opposite limit of weak and rapid fluctuations in frequency
has been studied by numerous authors in connection with turbulence, wave propagation,
line-broadening [10], lasers and chaotic dynamics [20, 21]. A comprehensive treatment has
been given in van Kampen [14].

We are now in a position to apply the result (15) to the following equation:

ẍ + ω2(t)x + γ ẋ = 0 (18)

with an adiabatically stochastic frequency,

ω2(t) = ω2
0[1+ α ξ(t)] (19)

whereξ(t) is an adiabatic stochastic process with zero mean〈ξ(t)〉 = 0; ω0 is the frequency
of the unperturbed oscillator andγ is the damping constant.α, the smallness parameter, is
dimensionless in equation (19).

Rewriting equation (18) in the form

d

dt

(
x

y

)
=
(

0 1
−ω2

0 −γ
)(
x

y

)
+ αω2

0 ξ(t)

(
0 0
−1 0

)(
x

y

)
(20)

one identifies,

A0 =
(

0 1
−ω2

0 −γ
)

A1 = ω2
0 ξ(t)

(
0 0
−1 0

)
u(t) =

(
x

y

)
(21)

of equation (15).X1 andX2 are related toE1 andE2 through (13) and are given by

X1 =
(
(B − A)/AB 1/AB

1 0

)
X2 =

( (
A2− AB + B2

)
/(AB)2 (B − A)/(AB)2

(B − A)/AB 1/AB

)
and

E1 =
(

1/A 0
0 −1/B

)
E2 =

(
1/A2 0

0 1/B2

)
whereA andB are related to the eigenvalues(e1, e2) of theA0 matrix:

A = − 1
2γ + 1

2

√
γ 2− 4ω2

0 (e1)

B = 1
2γ + 1

2

√
γ 2− 4ω2

0 (−e2).

The D matrix is given by

D =
(

1/(A+ 1)1/2 1/(B + 1)1/2

A/(A+ 1)1/2 −B/(B + 1)1/2

)
.
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So for the present problem, equation (15) takes the form

d

dt

(〈x〉
〈y〉
)
=
(

0 1
−ω2

0 − α2ω2
0

〈
ξ2
〉− α2γ 〈ξ ξ̇〉 −γ + α2

〈
ξ2
〉
γ

)(〈x〉
〈y〉
)

or

〈ẍ〉 + γ [1− α2
〈
ξ2
〉]〈ẋ〉 + [ω2

0 + α2ω2
0

〈
ξ2
〉+ α2γ 〈ξ ξ̇〉]〈x〉 = 0. (22)

It is thus evident that the adiabatic fluctuations in frequency cause a suppression of
the damping of the average amplitude of the oscillator. Or, in other words, the dissipative
oscillator experiences a partial gain in average amplitude by an amount,

γgain= α2γ
〈
ξ2(t)

〉
. (23)

As expected, the frequency of the unperturbed oscillator has also undergone a shift in
addition to this gain in amplitude.

The above result can be compared to the case of fast fluctuations in frequency as treated
by van Kampen and others. It is interesting to note that while the adiabatic fluctuations
result in a gain in amplitude, the fast fluctuations cause a damping of the average amplitude,
in general. This damping may even be negative when the fluctuations are particularly strong
at twice the unperturbed frequency. The latter results had been found to be useful in the
context of a fluctuation–dissipation relation in chaotic dynamics [21].

The theory developed in the preceding section also permits us to calculate the dynamics
of the higher moments. For example, the equations of the three moments can be found
from equation (18),

d

dt

x2

xy

y2

 =
 0 2 0
−ω2 −γ 1

0 −2ω2 −2γ

x2

xy

y2

 (24)

or rewriting it in the form

d

dt

x2

xy

y2

 =
 0 2 0
−ω2

0 −γ 1
0 −2ω2

0 −2γ

x2

xy

y2

+ αω2
0 ξ(t)

 0 0 0
−1 0 0
0 −2 0

x2

xy

y2

 (25)

we identify,

A0 =
 0 2 0
−ω2

0 −γ 1
0 −2ω2

0 −2γ

 and A1(t) = αω2
0 ξ(t)

 0 0 0
−1 0 0
0 −2 0

.
The eigenvalues ofA0 are

e1 = −γ
e2 = −γ +

√
γ 2− 4ω2

0

e3 = −γ −
√
γ 2− 4ω2

0.

(26)

Equation (15) therefore takes the form of an evolution equation of higher moments,

d

dt


〈
x2
〉

〈xy〉〈
y2
〉
 = T


〈
x2
〉

〈xy〉〈
y2
〉
 (27)
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where

T =

 0 2 0
α2ω2

0(γ
2c1−γ c2+2ω2

0c1)

2γ 2 − ω2
0

α2(γ 3c1−2ω2
0γ c1−2ω2

0c2−γ 2c2)

2γ 2 − γ 1− α2(γ 2+2ω2
0)c1

2γ 2

α2ω2
0(γ c2−γ 2c1−ω2

0c1)

γ

α2(γ 2c2+ω2
0c2−γ 3c1+3ω2

0γ c1)

γ
− 2ω2

0
α2(γ 2+ω2

0)c1

γ
− 2γ


(28)

wherec1 =
〈
ξ2
〉

andc2 = 〈ξ ξ̇〉.
What follows as a consequence of equation (27) is the shifting of eigenvalues of the

unperturbed oscillator. The eigenvalue which corresponds toe1 of the unperturbed case
now becomes

−γ − α2

{
γ

2
c1+ ω2

0

4ω2
0 − γ 2

c1− 1

2
c2

}
to second order inα. Thus the damping of energy of the unperturbed oscillator gets enhanced
beyond a critical value depending on the positivity of the term included in the parenthesis
of the last expression. In the negative region the term acts as a gain term leading to a
suppression of dissipation of energy of the oscillator.

In contrast to this case of adiabatic fluctuations, fast fluctuations make the oscillator
unstable energy-wise due to the fluctuations in the force that have twice the frequency
of the oscillator. Addition of a damping term, however, may result in stability below a
certain critical value and unstability above it. This result has been particularly relevant in
establishing the Kubo relation in chaotic dynamics [20].

4.2. Diffusion in a turbulent fluid

As a next application we consider a diffusive process in a fluid in motion described by

∂n

∂t
= −∇ · (nv)+D∇2n. (29)

Heren(r, t) is the number of ‘probe particles’ per unit volume andv(r, t) is the velocity
of the moving fluid. If turbulence sets in thenv(r, t) becomes a stochastic function ofr
and t . The problem has been addressed by numerous workers over several decades. To
quote a representative few of them we refer to [14].

For the present problem we considerv(r, t) as an adiabatic stochastic process. The
problem then is to find an averagen(r, t) for the given initial condition

n(r, 0) = δ(r).
We consider the turbulence to be weak and slow and without any loss of generality

assume

〈v(r, t)〉 = 0.

Equation (29) is of the form (3), provided the matrixA0 andA1 correspond to

A0 = D∇2 and αA1 = ∇ · v.
The symbol∇, as usual, acts on every functions ofr that appears to the right of it.

Equation (8) then takes the following form:

∂

∂t
〈n(r, t)〉 = D∇2〈n(r, t)〉 +

∫ t

0
dτ
〈∇ · v(r, t)eτD∇

2∇ · v(r, t − τ) n(r, t − τ)〉. (30)
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We take the Fourier transform in space of the last part of equation (30) to obtain

∂

∂t
〈n(k, t)〉 = −Dk2〈n(k, t)〉 − (2π)−3

∑
i,j

∫ t

0
dτ
∫ ∞
−∞

∫ ∞
−∞
〈vi(q, t) vj (q′, t − τ)〉

×n(k, t − τ)(qi + q ′i + ki)e−τD(k+q
′)2(q ′j + kj ) dq dq′. (31)

Expandingvj (q′, t − τ) n(k, t − τ) as a Taylor series and integrating overτ as before
we arrive at
∂

∂t
〈n(k, t)〉 = −Dk2〈n(k, t)〉 − (2π)−3

∑
i,j

∑
n

(−1)n

×
∫ ∞
−∞

∫ ∞
−∞

〈
vi(q, t)

1[
D(k + q′)2]n+1∂

n
t [vj (q

′, t) n(k, t)]
〉

×(qi + q ′i + ki)(q ′j + kj ) dq dq′. (32)

Taking into account the following properties of the stochastic functionv(q, t):

〈vi(q, t) vj (q′, t)〉 = δ(q + q′)(2π)3/2Cij (q)
〈vi(q, t) v̇j (q′, t)〉 = δ(q + q′)(2π)3/2C ′ij (q)

(33)

and imposing the adiabatic following approximation thatvj (q, t−τ) n(k, t−τ) varies much
slowly in the time scale ofD−1 we obtain

∂

∂t
〈n(k, t)〉 =

{
−Dk2− (2π)−3/2

∑
i,j

∫ ∞
−∞

Cij (q) ki(kj − qj ) 1

D(k − q)2 dq

+(2π)−3/2
∑
i,j

∫ ∞
−∞

C ′ij (q) ki(kj − qj )
1

D2(k − q)4 dq

−(2π)−3/2
∑
i,j

∫ ∞
−∞

Cij (q) ki(kj − qj ) k2

D(k − q)4 dq

}
. (34)

The effect of adiabatic stochasticity in the motion of the fluid thus essentially is to
recover a renormalized diffusion coefficientD(k) of ‘test’ particles in the following form:

D(k) = D + (2π)−3/2
∑
i,j

∫ ∞
−∞

Cij (q) ki(kj − qj ) 1

Dk2(k − q)2 dq

−(2π)−3/2
∑
i,j

∫ ∞
−∞

C ′ij (q) ki(kj − qj )
1

D2k2(k − q)4 dq

+(2π)−3/2
∑
i,j

∫ ∞
−∞

Cij (q) ki(kj − qj ) 1

D(k − q)4 dq. (35)

Hence equation (34) reduces to

∂

∂t
〈n(k, t)〉 = −D(k) k2〈n(k, t)〉 (36)

a normalized diffusion equation for isotropic turbulence. In the absence of any detailed
knowledge about the stochastic properties embedded inCij (q) andC ′ij (q) it is difficult to
proceed further. Nevertheless, in the limit of smallq one might expect some interesting
behaviour as has been observed in the case of rapid fluctuations.

It is well known that the long wavelength fast fluctuations are insufficiently damped by
the viscosity, which appears as a parameter in the correlation function of the incompressible
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fluids, which ensures the existence of a finiteτc. This causes long-time tails in the correlation
functions. As van Kampen [14] emphasized the stochastic description in terms of an average
〈n〉 ceases to become meaningful in these cases. Since the present treatment of slow
fluctuations is free from explicit correlation functions and we deal only with averages, such
pathological problems of long time tails or memory need not trouble us to that extent. This
leads us to believe that the average description remains more meaningful in such cases.

5. Conclusion

In this paper we have developed a method for the treatment of weak but adiabatically
slow stochastic processes. Based on the ‘adiabatic following’ approximation we recast a
class of linear stochastic differential equations with multiplicative noise into a differential
equation for the average solution. This has been carried out on the basis of an expansion
in α|µ|−1, whereα is the size of the fluctuation and|µ|−1 refers to the time scale of
evolution of the unperturbed system. The result differs significantly from the corresponding
treatment of weak and rapid fluctuations which relies on the expansion inατc, whereτc is
the autocorrelation time of the fluctuations [14]. It is also necessary to emphasize that in
the present work noa priori assumption on the nature of noise inA1(t) (such asA1(t) is
a Gaussian random process, etc, which has received so much attention in the literature) has
been made. Although in our applications we have dealt with classical and linear problems,
the theory can be extended to quantum mechanical and nonlinear problems as well. We
hope to address such issues in future communications.
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